Современные приборы учета — электронные счетчики электроэнергии: особенности устройства и эксплуатации

Какой класс точности должен быть у электросчетчика

Правильный выбор электрического счетчика для квартиры или частного домовладения является достаточно сложной задачей и предполагает учёт очень многих факторов, включая также класс точности.

При замене старого электрического счетчика, который устанавливается в квартиру, частный дом или гараж, очень важно ориентироваться не только на показатели мощности, но и класс точности, который обратно пропорционален указываемому производителем цифровому значению. Таким образом, нужно помнить, что чем меньше цифра обозначения на лицевой панели, тем выше уровень класса

Электронные модели электросчетчиков постепенно вытесняют старые индукционные

Индукционный счетчик электроэнергии, тем не менее, все еще используется, к тому же имеет некоторые преимущества

Электронные модели электросчетчиков постепенно вытесняют старые индукционные. Индукционный счетчик электроэнергии, тем не менее, все еще используется, к тому же имеет некоторые преимущества.

Что такое трансформатор тока и как он работает, читайте тут.

Расчет электроэнергии по однотарифному и многотарифному счетчикам различается. О том, как правильно снять показания, вы узнаете из этой информации.

Для квартиры

От показателей класса точности прибора учёта напрямую будут зависеть все колебания таких параметров, как процентное отклонение от настоящего количества всего потребляемого объёма электрической энергии.

Бытовое применение такого прибора в квартирных условиях предполагает приемлемый средний уровень класса точности в пределах двух процентов.

Например, реальное потребление электроэнергии в 100кВт предполагает наличие показателей на уровне от 98кВт до 102кВт. Чем меньшая цифра, указываемая с сопроводительной технической документации, обозначает класс точности, тем меньше будет погрешность. Следует отметить, что вариант электрических счётчиков с максимальной точностью отображения погрешностей, как правило, выше по стоимости, чем другие модели.

С целью правильного определения основных показателей квартирного счётчика при выборе модели очень важно получить разъяснения у специалистов организации, занимающейся энергетическим снабжением данного жилого помещения. Чаще всего, все нюансы обязательно прописываются в договоре, который заключается при поставке электрической энергии между организацией и потребителем

Важно помнить, что в соответствии с Российским законодательством, в договорах, заключаемых между потребителями и сбытовой организацией, обозначается только нижний уровень класса точности

В выборе верхних показателей, потребители электроэнергии на законодательном уровне не ограничиваются

Важно помнить, что в соответствии с Российским законодательством, в договорах, заключаемых между потребителями и сбытовой организацией, обозначается только нижний уровень класса точности. В выборе верхних показателей, потребители электроэнергии на законодательном уровне не ограничиваются

Все общедомовые электрические счетчики с классом 2.0 подлежат замене при выходе из строя или в процессе выполнения очередной плановой поверки

Все общедомовые электрические счетчики с классом 2.0 подлежат замене при выходе из строя или в процессе выполнения очередной плановой поверки.

Для частного дома

Прежде чем приступить к самостоятельному выбору определенной модели прибора учёта расходуемого электричества, требуется уточнить основные технические характеристики устройства, а также выяснить все условия энергоснабжения частного домовладения.

При отсутствии необходимых данных в сопроводительной документации, целесообразно привлечь специалистов, которые помогут уточнить тип напряжения, а также учтут количество подключаемых бытовых приборов и энергозависимой техники.

Желательно заблаговременно позаботится о составлении грамотной схемы электрической проводки в частном доме.

Для бытового потребления используются электросчетчики, обладающие точностью измерений в 2.5% или более. Именно такие пределы установлены для приборов учёта индукционного или электромеханического типа. Для наиболее точных электронных и цифровых моделей характерным является измерение потребляемой электрической энергии с уровнем погрешности – 1.0 или 1.5. Бытовые модели счетчиков, имеющие более высокие показатели класса точности, в настоящее время не производятся.

ТОП-2 трехфазных электросчетчиков

Эти устройства используются там, где наблюдается высокое энергопотребление. Обладают высокой мощностью и сложной конструкцией, расход измеряют очень точно. Максимальное напряжение сети – 380 В.

No2. ЛЭМЗ ЦЭ2727У

ЛЭМЗ ЦЭ2727У Прибор устойчив к различным типам воздействия (таким как ЭМ, погодное, механическое), а еще характеризуется высоким удобством эксплуатации. Предельная нагрузка равна 100 А. Заметим, что программное обеспечение дает очень большие возможности: оно не только ведет учет энергии, но и контролирует рабочие режимы, отвечает за хранение сведений и их передачу.

Плюсы

  • длительный эксплуатационный срок;
  • поддерживается 8 тарифов;
  • высокая степень защиты;
  • наличие предохранителя, препятствующего хищению электроэнергии.

Минусы

настраивать тарифы достаточно сложно.

No1. Ленэлектро 3.D1 1.0.A

Ленэлектро 3.D1 1.0.A Прибор с журналом учета и предусмотренным производителем контролем целого ряда параметров (к таковым относятся ток, частота, пофазная мощность и проч.). Еще заметим, что класс точности соответствует 2-му, дисплей отображает различные полезные сведения. Благодаря архивации можно хранить сведения за последние 3 года.

Плюсы

  • невысокая стоимость;
  • журнал учета;
  • точные показания;
  • дисплей весьма информативен.

Минусы

трудности с первичной настройкой модели.

Маркировка на электросчетчиках

Помимо видов счетчиков существует еще несколько нюансов, которые следует знать. На любом электросчетчике имеется определенная маркировка, условно обозначающаяся буквами и цифрами.

Рис.6. Обозначения на электросчетчике

ОбозначениеПояснение
СТип устройства (счетчик)
А, РВид учитываемой энергии (активная энергия/реактивная энергия)
ООднофазный счетчик
3, 4Число фазовых проводов в сети (четырёхпроводная/трёхпроводная)
УУниверсальность
ИТип измерительной системы (индукционный счетчик). Далее может стоять трёхзначное число, которое означает конструктивное исполнение счетчика (конструкция счетчика может быть индукционной или электронной).
ТТип счетчика в тропическом исполнении
П, МТип исполнения (прямоточный — если нет подключения к трансформатору/модернизированный). Далее могут быть такие сокращения, как «380/220 17А, 2001», что означает рабочие напряжения в проводах, максимальный поток тока и год изготовления. Также в конце надписи может стоять заводской номер.

Что касается класса точности электросчетчика, то по этим параметрам определяется точность показаний расходуемой электроэнергии. В квартирах, как правило, установлены счетчики класса 2,0, но могут быть и выше. Что это означает? А то, что ваш электросчетчик может учесть на 2% больше или меньше электроэнергии от своей собственной мощности. Или проще говоря — погрешность счетчика. Чем меньше цифра, тем меньше погрешность. В целом, в бытовых условиях достаточно электросчетчика класса 2,0. Более высокие классы точности необходимы скорее на предприятиях, где нужна большая мощность энергии.

Итак, на сегодняшний день мы можем себя не ограничивать в выборе электросчетчиков. Каждый из них имеет свои определенные особенности и функции. В этой статье мы разобрали основные особенности этих приборов и принципы их работы, что поможет вам сориентироваться в многообразии выбора.

И все-таки оно нагревается!

Принцип действия электронного счетчика основан на использовании второго, скорее побочного действия электромагнитной индукции – нагревании проводников. Температурные датчики – это могут быть термопары или терморезисторы, преобразуют тепло в электрический сигнал, который играет роль управляющего воздействия.

Подавляющее большинство электронных счетных устройств строятся на микросхемах серий МРС 3905, 3906 или 3909. Принципиально они состоят из трех модулей:

  1. Двух операционных усилителей (аналог катушек тока и напряжения).
  2. Генератора незатухающих колебаний, имеющего собственный блок питания и подключенного к одной из фаз.
  3. Счетчика импульсов.

Операционные усилители работают в паре с термодатчиками и подают электрический управляющий сигнал на генератор незатухающих колебаний, частота которых меняется в зависимости от его величины.

Если показания электросчетчика выводятся на жидкокристаллический дисплей, то количество импульсов за единицу времени учитывается отдельной микросхемой, преобразующей его в кодовый сигнал. При использовании механических редукторов импульсы поступают непосредственно на шаговый двигатель. Чем выше частота их следования, тем быстрее он вращается.

В трехфазных приборах электрического учета таких управляющих микросхем три, а в однофазных – одна.

Преимущества и недостатки системы автоматической передачи данных

При использовании прибора старого образца необходимо самостоятельно снимать показания, производить расчеты расходов и передавать данные поставщику. Кроме возможных ошибок, существует возможность, что потребитель не сможет вовремя выполнить необходимые действия. Установка нового оборудования исключает подобные трудности.

Дополнительно система решает и другие проблемы:

  1. Быстро разрешает спорный момент из-за ежедневной фиксации показаний.
  2. При смене тарифа сразу переводит на него.
  3. Позволяет удаленно контролировать ситуацию с помощью смартфона или ПК с доступом к интернету. Возможно дистанционное выключение подачи электроэнергии при аварийной ситуации.
  4. Экономит время.

Недостатком для потребителя является:

  1. Возможность отключения электроэнергии поставщиком при задолженности.
  2. Высокая стоимость самого прибора и его вынужденного ремонта.
  3. Зависимость от связи (интернет, радиомодуль).

Критерии подбора

Один из критериев выбора электросчетчика — количество тарифов Перед покупкой устройства стоит обращать внимание на ряд параметров:

  • Допустимая величина тока. Цифровые модели рассчитаны на ток 5-60А, что подходит для квартир и частных домов.
  • Дата проверки. На трехфазном счетчике должна находится пломба не старше 1 года.
  • Количество пломб. Первое опломбирование делают государственные органы – отметку проставляют на кожухе. Вторая пломба на зажимной крышке – от предприятия энергоснабжения.
  • Опционал. Чем больше функций, тем дороже счетчик. Но внутренний тарификатор создает график нагрузки, а в журнале событий отмечается повышение и понижение напряжения в каждой фазе.
  • Обслуживание и гарантии. Качественные модели имеют большой гарантийный период. Сервисный центр бренда есть в городе покупателя.
  • Интервал проверки. Оптимально – от 10 до 16 лет.
  • Интеграция с АСКУЭ. Показания автоматически передаются провайдеру.
  • Фазность. Информация указывается на табло. Однофазный аппарат имеет маркировку 220 или 230 В, трехфазный – 220/380 В или 230/400 В.
  • Количество тарифов. Двухтарифная схема исключает переплаты за электричество в ночное время.
  • Способ монтажа. Цифровой аппарат крепится на винтах (корпус S или Ш) или дин-рейках (корпус R или P).

Обозначение показателей цифрового счетчика

На основании данных электронного счетчика определяется несколько показаний:

  • Энергозатраты за конкретный временной период. Понадобится вычесть из конечных показаний начальные. При необходимости расчетные данные умножают на коэффициент трансформации;
  • Подключение бытовой техники и освещения в определенный момент. Устанавливается по загоранию/выключению светового индикатора.
  • Параметры мощности, величины проходящего тока, процессы перегрузки сети и счетчика.

Цифровые приборы можно запрограммировать на дневную и ночную тарификацию. Для этого достаточно выбрать время подсчета.

Принцип работы «умных» электросчетчиков

Упрощенно все электрические счетчики с дистанционной передачей показаний работают по одинаковой схеме. Они собирают информацию, передают ее на сервер, анализируют и хранят.

Бесперебойная передача данных обеспечивается благодаря технологиям:

  • wi-fi (за счет роутера);
  • LPWAN – через вышку, которая подключена к серверу;
  • GPRS – передача сигнала осуществляется с помощью сим-карты.

После сбора информации сведения обрабатываются модулем учета и передаются на сервер, где их принимают контроллеры. Вся информация отображаются в личном кабинете абонента.

Зайти в личный кабинет абонента электросети можно с любого устройства: планшета, смартфона или персонального компьютера (требуется только подключение к интернету)

Затем следует этап архивации и анализа поступившей информации. При этом контроллеры запрограммированы на определенные дни недели, и отправляют данные четко по графику. Такая упорядоченность позволяет лучше контролировать и анализировать энергопотребление конкретного абонента.

Конструкция и принцип работы

Прибор состоит из трёх одинаковых узлов (справа), цепей питания и микроконтроллера

Измерительный аппарат совместим с однофазными и трехфазными цепями переменного тока. Его конструкция представлена:

  • корпусом из термостойкого пластика или металла с клеммной колодкой;
  • дисплеем – ЖК-индикатором, где отображаются данные и время, или механическим;
  • источником запитки электронной схемы;
  • токовым трансформатором – выполняет функции измерителя;
  • микроконтроллером, преобразующим сигнал на входе в электрические величины;
  • телеметрическим выходом для интеграции с АСКУЭ;
  • часами – позволяют отслеживать реальное время и даты;
  • супервизором – отслеживает колебания напряжения на входе и подает команду сброса микроконтроллеру, когда напряжение выключается либо включается;
  • системой управления;
  • оптическим портом, позволяющим снимать показания устройства.

Основные характеристики цифровых счетчиков

На территории РФ приборы начали применять с момента приватизации энергетической отрасли и подорожания электричества. Электронные устройства обладают рядом положительных характеристик:

  • точность показаний при быстрой перемене напряжения или его снижении;
  • учет электроэнергии по нескольким тарифам;
  • подсчет различных типов энергии с помощью одного аппарата;
  • одновременно замеряется мощность, количество и качество энергоресурсов;
  • хранение данных в памяти и наличие к ним пользовательского доступа;
  • предотвращение несанкционированного доступа и хищения электричества;
  • дистанционное снятие показаний и предварительный подсчет потерь;
  • совместимость с автоматическими сервисами коммерческого учета электроэнергии.

Как сделан: устройство стандартного прибора учета

Стандартный механический водосчетчик устроен достаточно просто. Поток воды взаимодействует с лопастями крыльчатки. Скорость ее вращения пропорциональна количеству прошедшей через прибор воды.

Крыльчатка приводит во вращение счетный механизм, показания которого учитываются при определении объемов использованной воды. При этом, крыльчатка и счетный механизм изолированы друг от друга герметичной пленкой, а взаимодействие осуществляется с помощью магнитных элементов.

Как правило, на крыльчатке стоит крупный магнит в форме кольца. Смена его полюсов способствует вращению счетного механизма, на котором установлены ведомые магниты. Это позволяет исключить контакт расходомера с водой и обеспечить стабильность его работы.

Подробнее об устройстве счетчика воды читайте тут.

На фото ниже показана схема устройства механического счетчика учета воды:

И все-таки оно вертится!

Наиболее наглядно устройство электросчетчика видно на примере однофазного бытового устройства механического типа. Его принципиальная схема приведена на рисунке ниже.

  1. Ш-образный сердечник
  2. П-образный сердечник
  3. Редуктор
  4. Постоянный магнит
  5. Диск

К клеммам 1 и 2, в которые зажимается фазный провод, подключена катушка с небольшим количеством витков, установленная на П-образный металлический сердечник. Она называется токовой, поскольку включение последовательное. К клемме 1 также подключен еще один провод, идущий на другую катушку с большим количеством витков и установленную на Ш-образный металлический сердечник.

Место соединения разъемное, крепежом является винт, называемый «винт напряжения», поскольку второй конец катушки соединен с клеммой 3, к которой подключается нулевой провод и соединение параллельное. Сердечники катушек расположены под углом 90 0 друг к другу, а в разрыве между ними находится край алюминиевого диска.

При прохождении переменного электрического тока через катушки в сердечниках наводится пульсирующее магнитное поле. Их произведением является вихревой магнитный поток, вращающийся всегда в одну сторону. По закону электромагнитной индукции этот вихрь наводит электрический ток в алюминиевом диске и понуждает его вращаться вслед за собой. Поскольку учитывается и напряжение в сети, и сила тока, то измеряется расход именно электрической мощности, которая является произведением этих величин.

Все это очень напоминает устройство асинхронного однофазного электродвигателя с пусковой и рабочей обмотками. Различие только в том, что счетчик электроэнергии является измерительной машиной, поэтому для точности показаний в нем надо исключить все факторы, которые могут их изменить.

Например, момент инерции. Именно поэтому ротор, роль которого играет диск, выполняется из алюминия – наиболее легкого электропроводящего материала, не подверженного вторичному намагничиванию. Дисковидная форма выбрана по той причине, что побочным явлением электромагнитной индукции является нагревание металлов так называемыми токами Фуко.

В проводниках плоской формы они быстрее затухают. Это свойство используется, например, в высоковольтных трансформаторах большой мощности, первичная обмотка которых выполняется проводником прямоугольного сечения.

Вторым отличием механического счетчика от асинхронного двигателя является наличие в его конструкции тормоза – постоянного магнита, расположенного у края диска. Он нужен для того, чтобы вращение было равномерным, без ускорения, а остановка происходила мгновенно, без выбега. Положение этого магнита можно менять, меняя величину электрической мощности, на которую устройство не реагирует. Обычной заводской настройкой является 25 Вт.

Диск насажен на ось, на одном конце которой находится червячная шестерня. Через нее и приводится в действие редуктор счетного механизма. Смена положений обмоток действительно может привести к реверсированию. Для этого надо лишь изменить порядок подключения: фазу подать на клемму 3 и снять ее с четвертой. Для борьбы с мошенничеством в редукторе установлен храповой механизм, блокирующий вращение в обратную сторону.

Трехфазные счетные механические устройства устроены подобным же образом. Но есть тонкости: если схема построена с глухозаземленной нейтралью – фазы на выходе силового трансформатора подстанции соединены звездой и линия состоит из трех проводников, то в счетчике два диска на одной оси. А при обычном для линий до 1000 вольт соединении треугольником и наличии отдельной нейтрали (четыре провода) дисков три. При этом подсчет расхода электрической мощности ведется в любом случае, даже если задействована хотя бы одна фаза.

Отличия электронных счетчиков от индукционных

Индукционные модели работают по принципу создания электромагнитного поля в катушке и его взаимодействия с токопроводящим диском. Однофазный аппарат подключается к катушке-сети переменного тока параллельно. Магнитные потоки и вихревые токи взаимодействуют между собой только в диске. Индукционный счетчик будет функционировать нормально при фазовом сдвиге в 90 градусов. Энергозатраты зависят от интенсивности вращения диска, которая соответствует мощности потребления.

Принцип работы эл счетчика основывается на подсчетах мощности активного и реактивного типа. Это позволяет точно подсчитывать энергозатраты, если в помещении трехфазный тип подключения.

Индукционные модели считают расход по единому тарифу, цифровые приборы отслеживают параметры в зависимости от времени суток. Точность измерения нового счетчика – 1-й категории, традиционные выпускаются с классом точности 2,5.

По сравнению с индукционным цифровой счетчик на собственные нужды затрачивает минимум энергоресурсов. Традиционные устройства нельзя поставить снаружи, а электронные могут работать в условиях мороза, защищены от воздействия влаги и пыли.

Экспериментальные данные по проверке погрешности индукционных и электронных электросчетчиков

Для начала к обоим типам счетчиков подключал активную нагрузку в виде инфракрасного обогревателя марки ИК-2,0  мощностью 2 кВт. По истечении одной минуты показания по приборам учета составили: электронный насчитал 34 импульса, диск индукционного совершил 20 оборотов.

С учетом  длины подключаемого кабеля и переходного сопротивления в местах его присоединения оба счетчика насчитали по 34 Вт. Согласно паспортным данным обогревателя потребляемая из сети мощность составляет 2 кВт в час. Из курса электротехники известно, что мощность активной нагрузки в цепях переменного тока равна произведению силы тока на напряжение. Поскольку ИК-2,0 за 60 минут теоретически  потребляет 2 кВт, то поделив  2000 Вт на 60 минут получим, что за одну минуту его потребление электричества составит 33,33 Вт.

В технических характеристиках обоих счетчиков указано, что они учитывают только активную нагрузку. Но в паспортных данных электросчетчика СОЭ-55 50Ш-Т-112 есть пункт, указывающий на то, что он ведет учет полной мощности потребляемых цепями напряжения и тока, 8 В*А и 0,04 В*А соответственно, то есть учитывают и внутреннюю реактивную мощность!

Затем для проверки использовал активно-индуктивную нагрузку в качестве светильника ЛБ-2*40, считая ее только в качестве активной. В итоге получилось следующее: индукционный счетчик за 1,15 мин. “насчитал” 1,67 Вт, а электронный 2 Вт за такое же время, где разница составила 0,33 Вт.

Связано это с тем, что электронный счетчик помимо активной мощности учитывает еще и реактивную мощность, которая создает дополнительную нагрузку на электрические сети, однако индуктивными счетчиками не учитывается.

Принцип работы электронного счетчика электроэнергии

До недавних пор все измерения потребленной электроэнергии осуществлялись с помощью индукционных счетчиков. Постепенно, с развитием микроэлектроники, произошел существенный сдвиг в деле совершенствования приборов учета и контроля потребляемой электроэнергии. Были созданы современные цифровые электронные системы управления с применением новейших микроконтроллеров. Это позволило многократно повысить точность измерений, а отсутствие механики значительно повысило надежность счетчика.

Для электронных электросчетчиков разработана специальная элементная база и методы обработки поступающей информации. После обработки цифровых данных стал возможен одновременный подсчет не только активной, но и реактивной мощности

Данный фактор приобретает важное значение при организации учета в трехфазных сетях. В результате, были созданы многотарифные электросчетчики, учитывающие накопленную энергию в течение определенного времени суток

Данные приборы способны автоматически определять тот или иной тариф.

Простейшая цифровая система на основе обычного микроконтроллера применяется в тех случаях, когда необходимо измерить импульсы, вывести информацию на дисплей и обеспечить защиту при аварийном сбое. Такие устройства являются цифровыми аналогами механических электросчетчиков. В этой системе поступление сигнала происходит через определенные трансформаторные датчики. Далее он идет на вход микросхемы-преобразователя.

Снятие частотного сигнала, поступающего на вход микроконтроллера, осуществляется на выходе микросхемы. Микроконтроллер подсчитывает все поступившие импульсы и преобразует их в полученное количество энергии (Вт*ч). Когда поступающие единицы накапливаются, их общее значение выводится на монитор и фиксируется во внутренней флэш-памяти на случай исчезновения напряжения в сети и других сбоев. Это позволяет вести непрерывный учет потребляемой электроэнергии.

Работает многотарифный электронный счетчик электроэнергии по собственному алгоритму. Последовательный интерфейс позволяет обмениваться информацией с внешним миром. С его помощью задаются тарифы, устанавливается и включается таймер времени, поступает информация о накопленной электроэнергии и т.д. Энергонезависимая оперативная память разделяется на 13 банков данных, сохраняющих информацию о количестве энергии, накопленной по разным тарифам. Первый банк учитывает всю энергию, накопленную от начала работы счетчика. В следующих 12 банках производится учет накоплений за 11 предыдущих месяцев и за текущий период.

Таким образом, принцип действия электросчетчика в электронном варианте, позволяет изменять тарифы в соответствии с заранее установленным расписанием. Через специальный разъем можно подключиться к прибору и выяснить объем электроэнергии, оплаченной потребителем.

Срок службы электросчетчика, когда нужно менять

Класс точности электросчетчика

Как снимать показания электросчетчика

Установка электросчетчика в квартире

Как самостоятельно проверить электросчетчик

Типы ПУ электроэнергии

Механические (индукционные) – они стояли в любой квартире советских времен. Работает он по принципу счетов: каждый оборот диска регистрирует определенный объем потребленной энергии.

Долговечность такого ПУ проверена годами: хотя гарантийный срок службы, указанный в техпаспорте, составляет 15 лет, многие уже более полувека пользуются этим прибором без ухудшения технических характеристик.

Электронные ПУ – более современное устройство. В однофазных моделях запрограммированы некие временные периоды, в течение которых производится расчет по разным тарифам. Соответственно такие счетчики делятся на одно, двух— и даже более тарифные.

Электронные ПУ, в свою очередь, делятся на следующие виды:

  1. Однофазные и двухфазные счетчики электроэнергии чаще всего и используют для подключения в жилье, – квартирах и частных домах – небольших офисах, магазинах. Номинальная мощность – от 3 до 7кВт, напряжение 220В. Прибор рассчитан на 13–32А.
  2. Трехфазные производят измерения – 380В, 50Гц. Используются в поселках, где ввод электроэнергии на некоторую площадь возможет только по трехфазной системе. Также его устанавливают на предприятиях, в коммунально-бытовых зданиях.

По способу подключения счетчики подразделяются на ПУ:

  • прямого подключения – подсоединяются сразу в сеть;
  • косвенного включения – подключаются через трансформаторы, а не напрямую.
Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий