Кратность воздухообмена по СНиП: общие сведения, нормы для производственных и жилых помещений

Циркуляция воздуха в зданиях промназначения

При строительстве и планировании зданий под будущие промышленные нужды, необходимо грамотно рассчитать вентиляционные пути сообщения в помещениях и определить процесс циркуляции воздуха. Для этого понадобится такая характеристика, как кратность воздухообмена, которая определяется по табличным данным наличия в пространстве токсичных веществ: оксиды, окиси ацетилена и т.д.

Рассчитывая процесс циркуляции воздуха в здании, учитывается количество выделяемого тепла таким образом, чтобы полученное количество, большее нормы могло удаляться, круглогодично, без трудностей и препятствий.

При таких показателях воздухообмена, организация воздушных путей, достигаются метеорологические стандарты, предусматриваемые нормами санитарии.

Так, непосредственно обустройство и возведение помещений, влияет впоследствии на расчетную кратность воздухообмена, для этого предусматривают специальные работающие проемы, которые можно открыть, гарантирующие возможность получения работниками свежего воздуха и удаление неблагоприятных элементов.

Таблица относительного воздухопотребления по отраслевому назначению

Как можно классифицировать системы промышленной вентиляции

Системы промышленной вентиляции можно классифицировать по трем признакам.

  1. По принципу работы: естественные и механические.

Естественные функционируют за счет разницы давления и температуры снаружи и внутри помещений. Для подачи чистого и отвода отработанного воздуха используют систему вентиляционных отверстий. Воздухообмен регулируют с помощью задвижек или форточек.

Такие системы не требуют больших финансовых вложений, но они малоэффективны, зависят от внешних факторов (времени года, давления) и подходят только для производств, где нет выброса вредных веществ. Фактически с их помощью можно контролировать только температуру и влажность в помещениях.

Механические или принудительные системы промышленной вентиляции работают с помощью специального оборудования и не зависят от внешних факторов. Их можно использовать на любых производствах. У систем больший радиус действия, они улавливают вредные вещества в местах выброса, не допуская распространения, и могут не только очищать воздух, но и подогревать, увлажнять или осушать его.

  1. Механические системы промышленной вентиляции по решаемым задачам делят на общеобменные и местные.

Общеобменные осуществляют воздухообмен во всем помещении. Они удобны, если в цехах нет фиксированных рабочих мест или вредные для здоровья вещества в небольшой концентрации равномерно занимают все пространство.

Местные системы промышленной вентиляции выполняют воздухообмен на отдельных участках производственного помещения. Они эффективны, если имеются точечные очаги выбросов вредных веществ, распространение которых недопустимо.

  1. Механические системы промышленной вентиляции по используемой технологии и принципу подачи воздуха делят еще на три вида: приточные, вытяжные и приточно-вытяжные.

Особенности приточной промышленной вентиляции

При использовании приточной вентиляции воздухообмен обеспечивается за счет нагнетания чистого воздуха в помещения, а отток выполняется естественным образом за счет разницы давлений в помещении и вне его. Такие системы подходят для производств без выделения вредных веществ или при выделении их в малом количестве.

Особенности вытяжной промышленной вентиляции

В этом случае обеспечивается принудительный отвод загрязненного воздуха из помещений. Приток воздуха выполняется естественным путем в результате падения давления в вентилируемом помещении.

Эти системы оптимальны для очистки воздуха от высокотоксичных веществ и удобны для удаления лишней влаги, углекислого газа или неприятных запахов, но их помощью нельзя регулировать параметры поступающего воздуха.

Особенности приточно-вытяжной промышленной вентиляции

При использовании таких систем приток и вытяжка воздуха выполняются принудительно. В результате обеспечивается качественный и эффективный воздухообмен с очисткой воздуха и регулированием его температуры и влажности. При этом могут быть реализованы две схемы распределения воздуха: перемешивание или вытеснение.

При перемешивании чистый воздух подается в помещение с верхних точек, перемешивается с отработанным и выводится через воздухораспределительные решетки.

При вытеснении снизу подается чистый воздух, вытесняет отработанный и удаляется через воздухораспределительные решетки.

Виды воздухообмена, применяемые на производстве

В зависимости от способа воздействия воздухообмен в производственном помещении может быть представлен:

  • устройством приточного типа;
  • устройством вытяжного типа;
  • устройством комбинированного типа.

Первый вариант заключается в естественном поступлении свежих воздушных масс в объемах, которые являются достаточными для целевой работоспособности производственных площадей.

Чаще всего такая система представлена канальными вентиляторами, способными обеспечивать принудительный доступ воздуха и естественный вынос загрязненных воздушных масс за пределы помещения.

Особенностью вентилирования вытяжного типа является удаление отработанного воздуха и замена его чистыми воздушными массами, поступающими в неорганизованном виде, посредством дверей, окон и стеновых проемов. Это основной вариант вентилирования на крупных производствах с вредными веществами, повышенной влажностью, а также высокотемпературными режимами. Самым простым устройством является установка, представленная электродвигателем и вентилятором, а также при необходимости дополненная фильтрующей системой или разветвленным воздуховодом.

Комбинированный вариант вентилирования удачно сочетает в себе поступление свежего воздуха с выведением отработанных воздушных масс посредством вытеснения или перемешивания. Второй способ заключается в установке на верхней части помещения высокоскоростных диффузоров на принудительное поступление уличного свежего воздуха и диффузионных клапанов на вывод отработанных воздушных масс. Процесс вытеснения основан на монтаже в нижней части помещения нескольких распределителей с низкой скоростью, способных обеспечивать принудительный приток чистого воздуха.


Производственное помещение, оборудованное вентиляцией

Основные элементы аэрации естественного, организованного и управляемого типа чаще всего представлены:

  • Створными переплетами на вращательной оси верхнего, среднего и нижнего типа. Нижнее осевое вращение створок применяется при необходимости направить воздушный поток вверх.
  • Фонарями в виде специальных конструкций кровельной части строения. Такие устройства в значительной степени повышают показатели высоты вытяжного проёма, а также направлены на усиление тепловых и ветровых потоков.
  • Шахтными и трубными вытяжками, повышающими высоту вытяжного проёма, если конструкцией не предусмотрено наличие фонарей.
  • Дефлекторами, повышающими показатели теплового и ветрового напора, и устанавливаемыми на вытяжных кровельных трубах или шахтах.

По характеру функционирования, вентиляция может быть представлена:

  • общим обменным оборудованием, обеспечивающим полноценный воздухообмен в помещении;
  • местными устройствами, осуществляющими замену воздушных масс в конкретной части помещения.

Посредством вентилирования механического типа может осуществляться общая обменная вентиляция приточного, вытяжного и комбинированного типа.

При необходимости, используются дополнительные функции вентиляционной системы, которые могут быть представлены кондиционированием, фильтрацией, подогревом или охлаждением, увлажнением или осушением, а также ионизацией воздуха.

7.2 Расчет расхода воздуха, удаляемого местными отсосами и вентилируемыми потолками

Расчет габаритов местных отсосов
и расхода воздуха, удаляемого местными отсосами и вентилируемыми потолками,
допускается осуществлять производителям – поставщикам оборудования. При этом
последние несут ответственность за правильность расчетов и за то, что местные
отсосы и вентилируемые потолки, смонтированные и работающие в соответствии с их
расчетами и рекомендациями, будут полностью улавливать кухонные выделения.

7.2.1 Расчет конвективного потока над горячей
поверхностью кухонного оборудования

Расход воздуха, удаляемого местным
отсосом, определяют из расчета улавливания конвективного потока, восходящего
над горячей поверхностью кухонного оборудования.

Расход воздуха в конвективном
потоке над индивидуальным кухонным оборудованием Lкi, м3/с,
рассчитывают по формуле

Lкi = kQк1/3(z + 1,7D)5/3r, (1)

где k
экспериментальный коэффициент, равный 5·10-3м4/3·Bт1/3·c-1;

Qк – доля конвективных тепловыделений кухонного оборудования, Вт;

z – расстояние от поверхности кухонного оборудования
до местного отсоса, м (рисунок 4);

D – гидравлический диаметр поверхности кухонного
оборудования, м;

r– поправка на положение источника теплоты по
отношению к стене, принимают по таблице 1.

Рисунок 4 – Конвективный поток над поверхностью кухонного оборудования:

Lкi– конвективный поток воздуха над индивидуальным
кухонным оборудованием, м3/с; z– расстояние от поверхности кухонного оборудования
до местного отсоса, м; h– высота
кухонного оборудования, как правило, равная от 0,85 до 0,9 м; Qк – конвективные тепловыделения кухонного
оборудования, Вт; А, В – соответственно длина и ширина
кухонного оборудования, м

Таблица
1 – Поправка на положение источника теплоты по отношению к стене

Положение
кухонного оборудования

Коэффициент r

Свободно
стоящее

1

У стены

0,63ВА, но не менее 0,63 и не более 1

В углу

0,4

Долю конвективных
тепловыделений кухонного оборудования Qк, Вт, определяют по формуле

Qк = QтКяКкКо, (2)

где Qт – установленная мощность кухонного оборудования,
кВт;

Кя – доля явных тепловыделений от установочной мощности кухонного
оборудования, Вт/кВт, принимают по ;

Кк – доля конвективных тепловыделений от явных тепловыделений кухонного
оборудования. При отсутствии данных для конкретного оборудования допускается
принимать Кк = 0,5;

Ко – коэффициент одновременности работы кухонного оборудования, принимают
по .

Гидравлический диаметр поверхности кухонного
оборудования D, м, определяют по формуле

(3)

где А – длина кухонного
оборудования, м;

В – ширина кухонного оборудования, м.

7.2.2 Расчет расхода воздуха,
удаляемого местным отсосом

Расход воздуха, удаляемого
местным отсосом, Lo, м3/с, определяют по формуле

(4)

где n– количество
оборудования, расположенного под отсосом;

Lкi -тоже, что в формуле (1);

Lri – объемный расход продуктов
сгорания кухонного оборудования, м3/с. Для оборудования, работающего
на электроэнергии, Lri = 0. Для оборудования, работающего на газе,
рассчитывают по формуле

Lri = 3,75·10-7QтКо, (5)

где Qт, Ko
– то же, что в формуле (2);

а – поправочный коэффициент,
учитывающий подвижность воздуха в помещении горячего цеха, принимают по таблице
2 в зависимости от системы воздухораспределения;

Кко – коэффициент эффективности местного отсоса. Для стандартных местных
отсосов принимают равным 0,8. Активированные местные отсосы (с поддувом
приточного воздуха) обладают коэффициентом эффективности выше 0,8. Для таких
отсосов значение Кко принимают по данным производителя.
Производители активированных местных отсосов с Кко > 0,8
должны представить результаты испытаний поставляемого ими активированного
отсоса для подтверждения заявленного коэффициента эффективности.
Ориентировочно, при отсутствии данных, можно принять Кко =
0,85.

Таблица 2

Способ
подачи воздуха

Коэффициент а

Перемешивающая
вентиляция

Струйная
подача воздуха

через
приточные решетки на стен

1,25

через
плафонные воздухораспределители на потолке

1,20

Вытесняющая вентиляция

Подача
воздуха через низкоскоростные перфорированные панели*

на потолке

1,10

в рабочей
зоне помещения

1,05

* Скорость воздуха, отнесенная к общей
площади перфорированной панели, не превышает 0,7 м/с. Конструкция воздухораспределителя
должна обеспечивать равномерную раздачу воздуха по всей поверхности
перфорированной панели.

7.2.3 Расчет расхода
воздуха, удаляемого вентилируемым потолком

Расход воздуха, удаляемого
вентилируемым потолком, Lo, м3/с, рассчитывают по
формуле

(6)

где Lкi – то
же, что в формуле (); при расчете Lкi
высоту z принимают равной расстоянию от поверхности кухонного
оборудования до потолка, но не менее 1,5 м;

Lri, а – то же, что в формуле ().

Классификация естественно вентиляции

Аэрация

Обеспечивается за счет разницы температурных показателей на улице и внутри производственного помещения. Такой тип вентиляции широко используется в промышленности с усиленным выделением тепла, но при соответствии нормам количества пыли и вредных компонентов. Аэрация не используется в тех производствах, где необходима обработка приточного воздуха

Конвекция

Формируется за счет разницы в давлении верхних и нижних шаров воздуха: теплый воздух в закрытом пространстве вытесняется холодным воздушным потоком с улицы

Ветровое давление

Образуется за счет расположения вентиляционных шахт с ветреной стороны здания. Воздушные потоки, которые перемещаются с помощью ветра попадают в здание и вытесняют отработанный воздух

Расчет вытяжной вентиляции

вытяжной вентилятор

Расчет вытяжной и приточной вентиляции промышленных помещений начинается с выявления источников ядовитых или взрывоопасных выделений. Далее рассчитывается расход приточного и вытяжного воздуха, достаточного для обеспечения санитарных норм. Если в помещении нет источников вредных веществ, расчет вытяжной вентиляции ограничивается формулой:

O=m * n,

здесь: О – объем воздуха, регламентированный санитарными нормами; m – расход свежего воздуха на одного рабочего в час; n – количество сотрудников.

Величина m определяется СНиП на каждого сотрудника:

  • при наличии проветривателей m=30 кубометров в час;
  • без притока воздуха m=60 кубометров в час.

Зачастую вредные вещества выделяются по всему объему цеха и необходимо уменьшить их концентрацию до ПДК в месте нахождения людей, после чего отвести с помощью механической вытяжной вентиляции. Нормы ПДК можно найти в специальной литературе, для каждого вредного вещества существует свой порог. Рассчитаем объем свежего воздуха, необходимый для разбавления до ПДК:

О=Мв(Ко-Кп),

здесь: Мв – вес вредного вещества, поступающего в воздух за 1 час; Ко – удельная концентрация вредного вещества в воздухе помещения; Кп – концентрация вредного вещества в приточке. Зная необходимый объем воздуха, можно подобрать мощность двигателя для вытяжной вентиляции.

Если в цеху выделяется несколько вредных веществ, расчеты выполняются по каждому из них отдельно и потом суммируются. Для определения общего воздушного баланса помещения складываются расходы всех местных вытяжных вентиляций для пайки и суммарный приток.

Чтобы определить количество приточного воздуха, рассчитываем излишки теплоты:

W=Ol + [3,6q – c * Ol(Tr – Tp)/c(T1-Tp)],

здесь: Ol – объем удаляемого локальными вытяжками воздуха; q – количество тепла, выделяемого станками и продукцией; c – теплоемкость, берется из справочника, равняется 1,2; Tr – температура удаляемого из рабочей зоны воздуха; Tp – температура притока; T1 – температура удаляемого из всего помещения воздуха.

Естественного типа

расчет вентиляции для жилых домов

Рассмотрим, как рассчитать вытяжную вентиляцию естественного типа. При таком виде воздухообмена отработанный воздух вытягивается через шахты. На его смену через специально оборудованные или стихийно возникающие щели поступает свежий воздух с улицы.

Рассчитываем разность давлений на концах вытяжного канала в Паскалях:

∆H=g*L(Ωh-Ωb),

здесь: g – 9,8 – ускорение свободного падения, L – длина воздуховода, Ωh – плотность воздуха на улице, Ωb – плотность воздуха в воздуховоде.

При аэрации в помещение проникает количество воздуха, определяемое по формуле:

O=3,6*Q/(tv–tp),

здесь: 3,6 – удельная теплоемкость, Q – суммарный теплоприток, tv – температура выдува, tp – температура притока.

Для самого длинного воздуховода рассчитывается потеря давления, равная суммарной потере давлений всех отрезков.

На одном участке потеря давления вычисляется так:

P=r*L + z,

здесь r – потеря давления на отрезке, L – длинна отрезка воздуховода, z – потери от сопротивления.

Состав проектной документации

Основная задача проекта – это правильное, подробное и понятное описание системы вентилирования, её составных частей и узлов. Включает несколько документов:

  1. Основной чертеж. План системы вентиляции, вписанный в здание.
  2. Аксонометрическая схема вентиляции.
  3. Спецификация на станки и производственное оборудование.
  4. Дополнительные схемы гидравлических частей вентиляционного оборудования.
  5. Схемы узлов сложных установок.
  6. Локальные разрезы отдельных узлов или вентиляционных камер.


Аксонометрия вентсистемы План общеобменной вентиляции может быть в виде объемной модели. Это актуально для крупных и средних по размеру производственных объектов, где протяженность вентканалов составляет несколько километров.

Инструкция: вычисления по зданиям промышленного назначения

Расчет воздуховодов – подбор прямоугольных сечений.

В составе этого вида зданий находится множество комнат и кабинетов. Те из них, в которых вентиляция должна обеспечить комфортный труд людей низкой категории тяжести работ (администрация, бухгалтерия и так далее), рассчитываются по алгоритму, приведенному выше. В остальных помещениях, в которых проходят технологические и вспомогательные процессы, необходимо рассчитывать приточно-вытяжную вентиляцию в соответствии со СНиП 41-01 по видам выделяющихся в них вредных или горючих веществ, излишкам тепла.

Прежде чем приступить к расчету общеобменной вентиляции, нужно выяснить, сколько воздуха из пространства комнаты уходит из-за работы местных отсосов. К ним относятся вытяжные зонты и лабораторные шкафы, различные всасывающие панели и укрытия. Применяются они с целью отобрать вредные вещества прямо от источника их выделения, не допуская распространения по всему объему помещения. Зачастую местные отсосы идут в комплекте с технологическим оборудованием, поэтому их производительность заранее известна. Другие требуется рассчитать и установить в зависимости от размеров и интенсивности источника выброса, порядок этих расчетов приведен в технической литературе. Для укрупненного определения производительности местного отсоса можно применить знакомую формулу: Lотс=3600ϑ*Sотс, где:

  • ϑ – скорость воздушного потока в рабочем проеме вытяжного зонта или шкафа (принимается 1 м/с);
  • Lотс – расход воздуха через этот рабочий проем (м3/ч);
  • Sотс – площадь проема (м2).

Полученная величина будет участвовать в дальнейшем просчете необходимого количества приточного воздуха. Но сначала нужно выяснить, сколько необходимо подать воздуха с улицы для различных условий. Суть операции в том, чтобы определить виды и количество выделяющихся в пространство помещения вредных для здоровья человека или горючих и взрывоопасных веществ. Вычисления производить на основании этих данных. Если источников выделений несколько, то считать придется по каждому из них, а для вентиляции принять наибольший результат.

Таблица предельно допустимых концентраций вредных веществ.

Зная, сколько выделяется каждого вещества в помещение за промежуток времени (мг/ч), не трудно определить его концентрацию (мг/м3). Условно считается, что вещество распределяется на весь объем комнаты. После этого находят значение предельно допустимой концентрации (ПДК) этого вещества в соответствующей нормативной документации. Если концентрация в помещении превышает ПДК, нужно подать определенное количество свежего воздуха, а загрязненный – удалить. Величину притока считают по формуле: L=Mвв/yпом-yп, где:

  • L – необходимое количество свежего притока (м3/ч);
  • Mвв – значение массы выделяющегося вредного вещества за 1 час (мг/ч);
  • yпом – расчетная величина удельной концентрации вещества в объеме комнаты (мг/м3);
  • yп – его удельная концентрация в поступающих с улицы воздушных массах (мг/м3).

От полученного значения L нужно отнять величину Lотс, полученную ранее. Результатом будет расход воздушных масс, которые необходимо удалить из помещения с помощью общеобменной вытяжной вентиляции.

Удаление избыточного тепла

Формулы определения необходимого воздухообмена

В результате некоторых технологических процессов в пространство помещения попадает излишнее количество тепла, его нужно нейтрализовать с помощью подачи приточного воздуха. Тогда расчет ведут по формуле: L=Lотс+[3.6Q-С Lотс (tмо-tп) / c (tпом-tп)].

Здесь:

  • Lотс – полученное ранее значение количества вытяжки, что выполняют местные отсосы, находящиеся в рабочей зоне (последняя – это пространство высотой в 2 м от пола) (м3/ч);
  • Q – величина теплоты, которая выделяется при технологическом процессе (Вт);
  • tмо – температура воздуха, который удаляется местными вытяжными устройствами (° С);
  • tпом – температура воздушных масс, которые удаляются из пространства над рабочей зоной с помощью общеобменной вытяжной вентиляции (° С);
  • tп – температура свежего воздуха с улицы (° С);
  • С – удельная теплоемкость воздуха, равна 1,2 кДж (м3 * °С).

СНИП вентиляция производственных помещений

Имеет следующие разновидности:

  1. Процесс выноса из рабочей зоны пыли и газов, которые являются неотъемлемым фактором работы оборудования, называется аспирацией.
  2. Для стабильного и полноценного наполнения помещения воздухом, а также полного удаления загрязненных воздушных масс используется приточно-вытяжная система вентиляции.
  3. Процесс удаления эмиссии дыма при возгорании или оплавлении оборудования и/или отдельных его частей поможет избежать отравления угарным газом сотрудников и специалистов. Такой процесс называется дымоудаление.
  4. Должна обеспечиваться чистота воздушных масс во всех используемых помещениях.

Что касается технологического оборудования и средств принудительной вентиляции, то для каждой рабочей зоны они свои. Но основным критерием обеспечения правил СНИП является недопущение повторной рециркуляции воздушных масс между помещениями, т.е. каждая комната должна быть оборудована системами притока и оттока воздуха, он не должен последовательно перетекать из одной комнаты в другую, потому что воздушная масса может содержать газообразные продукты.

Они могут привести к пожарам или взрывам, а также существенно увеличить температуру или влажность в помещении.

Схема действия естественного воздухообмена

Вентилирование помещений, осуществляющееся первым способом, не что иное, как простое проветривание. Происходит оно без вмешательства человека и возможно, когда ограждения недостаточно плотные, и пропускают в помещение воздух как извне, так и изнутри.

На направление оказывает влияние давление. Если его показатели имеют более высокое значение снаружи, то открывается путь для проникновения в помещение чистого воздуха с улицы. В противном случае теплый воздух из помещения находит пути выхода наружу. Зачастую эти процессы протекают параллельно.

Большой плюс естественной вентиляции заключается в том, что ее устройство не требует значительных затрат ни на оборудование, ни на подвод электропитания. Из всех существующих схем эта самая простая

Способствует этому процессу и появление отдельных участков с высокими и заниженными показателями давления со стороны корпуса, интенсивно обдуваемой ветром и с его более защищенной стороны соответственно. При таком раскладе наблюдается инфильтрация — воздух поступает в помещение с наветренной стороны, а выходит наружу с подветренной.

Коэффициент воздухообмена, характеризующий интенсивность процесса, при естественном способе вентилирования не превышает 0,5.

Комфортные условия, для находящихся в производственном помещении людей и работающего оборудования, неорганизованная вентиляция обеспечить не может. Здесь обязательно должны присутствовать специально разработанные системы.

Естественная вентиляция организованного вида реализуется путем аэрации или при помощи дефлекторов. Как подача, так и удаление воздуха из помещения происходит или через проемы в ограждающих конструкциях, или через воздухоотводы. В канальной вентиляции обязательно присутствует дефлектор.

Когда говорят о вентиляции на производстве, то имеют ввиду не только оборудование, но и его техобслуживание, и целый комплекс мероприятий, касающихся создания здорового микроклимата

6 Местная вытяжка и формула расчета

Если компания не осуществляет выброс вредных веществ, то можно провести расчет общеобменной вентиляции производственного помещения как L = N х L н, где N — количество рабочих, находящихся в помещении, а L н — необходимый объем воздуха для одного человека, который измеряется в куб. м/ч.

Учитывая такой параметр, как кратность воздуха, расчет проводится по формуле L = n x S x Н, где n — кратность, равная 2 в производственном помещении, S — площадь, а Н — высота.

Вентиляция производственных цехов должна обладать двумя критериями — это грамотное исполнение и функциональность. Только в этом случае можно организовать рабочие места в соответствии с нормами

Поэтому так важно произвести точный расчет местной вентиляции

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий