Устройство и принцип работы солнечной батареи: схема и комплектующие, история создания

Сфера применения солнечной энергии

Есть три направления использования солнечной энергии:

  • Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
  • Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
  • Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.


Солнечные батареи удобно применять там, куда нельзя подвести электричество

Немного истории

Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.

Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.

Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.

Понятие солнечной энергетики

Солнечная энергетика — это тематика, в которой имеется очень много неразберихи и нюансов. Попытки разобраться в ней часто вызывают трудности у новичков и людей, далёких от техники. Но без понимания принципа действия солнечных батарей не получится выжать максимальный КПД. В этом случае приобретение оборудования бессмысленно, ведь можно выбрать не ту модель или попросту сжечь технику.

Чтобы избежать неприятных последствий, нужно разобраться с разновидностями оборудования для получения энергии от солнечных лучей. Существует два типа устройств, имеющих принципиальные различия между собой. Солнечные батареи используются для преобразования фотонов в электрическую энергию. Коллекторы применяются для получения тепловой энергии.

Также нужно разобраться с самим понятием солнечной батареи. Слово «батарея» подразумевает какое-либо накопительное устройство, но это не совсем так. Солнечная батарея используется только для выработки электроэнергии. В течение дня электрическая энергия накапливается в аккумулирующих устройствах для обеспечения дома в ночное время.

Из данного видео узнаем как устроена солнечная батарея:

6 Как грамотно выбрать контроллер заряда аккумулятора?

Для того, чтобы выбрать нужный контроллер, необходимо определиться с функцией, которую будет нести данное устройство и с масштабом всей установки. Если предполагается сборка небольшой солнечной системы, которая будет контролировать бытовые приборы с мощностью не более двух киловатт, то достаточно установки PWM контроллера. Если же речь идет о более мощной системе, которая будет контролировать сетевое электричество и работать в автономном режиме, тогда необходима установка MTTP контроллера. Все зависит от напряжения которое поступает на контроллер аккумулирующего устройства. PWM-контроллера способны выдержать показатели до 5 кВт, в свою очередь MTTP-модули выдерживают до 50 кВт.

6.1 Подбор по мощности массива солнечных батарей

Основной параметр контроллера солнечного заряда это рабочее напряжение и максимальная сила тока, с которой может работать контроллер заряда

Очень важно знать такие параметры солнечных батарей, как:

  • Номинальное напряжение – рабочее напряжение контура солнечных батарей, замкнутого на нагрузку, т.е. на контроллер;

  • Напряжение открытого контура – максимальное достигаемое напряжение контура солнечных батарей, не подключенного к нагрузке. Также же это напряжение называется напряжением холостого хода. При подключении к контроллеру солнечных батарей, контроллер должен выдерживать данное напряжение.

  • Максимальная сила входного тока от солнечных батарей, сила тока контура солнечных батарей в режиме короткого замыкания. Этот параметр достаточно редко указывается в характеристиках контроллера. Для этого необходимо узнать номинал предохранителя в контроллере и посчитать величину тока короткого замыкания солнечных модулей в контуре. Для солнечных батарей ток короткого замыкания обычно всегда указан. Ток короткого замыкания всегда выше максимального рабочего тока.

  • Номинальный рабочий ток. Ток подключенного контура солнечных батарей, который вырабатывается солнечными батареями при нормальных условиях эксплуатации. Данный ток обычно ниже указанного тока в характеристиках для контроллера, так как производители, как всегда, указывают максимальную силу тока контроллера.

  • Номинальная мощность подключаемых солнечных батарей. Данная мощность представляет произведение рабочего напряжения на рабочий ток солнечных батарей. Мощность солнечных батарей, подключенных к контроллеру должна быть равна указанной или меньше, но никак не больше. При превышении мощности, контроллер при отсутствии предохранителей может сгореть. Хотя большинство контроллеров, естественно, имеют предохранители, рассчитанные на перегрузку в 10-20% в течение 5-10 минут.

6.2 Покупка контроллера заряда АКБ – на что обратить внимание

Выбирая контроллер, следует обратить внимание на ряд технических параметров, которые позволят получить оптимальную по мощности систему электроснабжения. Прежде всего, следует знать о технологических различиях контроллеров, которые реализованы в основных видах этих устройств, существующих на сегодняшний день

Источники

  • https://sovet-ingenera.com/eco-energy/sun/kontroller-zaryada-solnechnoj-batarei.html
  • https://usilitelstabo.ru/kontroller-zaryada-solnechnoy-batarei.html
  • https://kachestvolife.club/ekologiya/solnechnaya-energiya/principy-i-shema-raboty-kontrollera-zaryada-dlya-solnechnoy-batarei-vinur
  • https://strop-snab.ru/novosti/kontroller-zaryada-akkumulyatora.html
  • https://alter220.ru/solnce/mppt-kontroller.html
  • https://alter220.ru/solnce/kak-sdelat-kontroller-zaryada-akkumulyatora-svoimi-rukami.html
  • https://favoritedishes.ru/kak-sdelat-kontroller-zaryada-akkumulyatora/
  • https://pro-lampy.ru/raznoe/kakoy-kontroller-vybrat-dlya-solnechnyh-batarey.html

4 Сравнение контроллеров MPPT и PWM (ШИМ)

В солнечных и ветровых установках по производству электрической энергии используются два вида контроллеров, это МРРТ, о которых было написано выше и PWM (ШИМ) котроллеры.

ШИМ аппараты являются более дешевыми устройствами, принцип действия которых основан на использовании широтно-импульсной модуляции. Устройства данного типа подразделяются на шунтовые и последовательные.

Для того, чтобы выбрать наиболее подходящий для конкретной системы, нужно их сравнить, чтобы изучить достоинства и недостатки каждого типа подобных устройств.

4.1 Достоинства устройств разного типа:

  1. МРРТ контроллеры.

  • Возможность использования в различных системах, различающихся по источнику получения энергии (солнечные, ветровые, комбинированные системы)
  • Высокий КПД.
  • Создание оптимальных условий работы для аккумуляторных батарей позволяет продлить сроки их эксплуатации.
  • Высокое напряжение на входе позволяет уменьшить сечение кабелей и проводов, используемых для соединения элементов системы или увеличить расстояние от источника энергии до контроллера.
  • Использование устройств данного типа позволяют увеличить эффективность использования солнечных батарей, что обусловлено возможностью заряда аккумуляторов при низкой освещённости.
  1. PWM контроллеры.

  • Низкая стоимость.
  • Последовательные модели: позволяют использовать одновременно различные источники энергии и создают низкий нагрев во время регулирования;
  • Шунтовые модели: незначительные потери мощности в процессе работы, слабые электромагнитные помехи и низкий уровень падения напряжения в ключах.

4.2 Недостатки устройств разного типа:

  1. МРРТ контроллеры.
  • Высокая стоимость.
  • Более сложная технология, в равнении с аналогами.
  1. PWM контроллеры.
  • Последовательные модели: при полном заряде источник энергии отключается, значительные потери в последовательных ключах, электромагнитные помехи.
  • Шунтовые модели: значительный нагрев во время работы, невозможность использования с иными источниками энергии, кроме солнечных панелей.

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Как выбрать контроллер для солнечной батареи?

Это очень важное устройство, которое достаточно сложно правильно подобрать среди великого многообразия. Чтобы взять то что действительно нужно придерживайтесь следующих данных:

  • Мощность батареи. На выходе общая мощность не должна быть больше показателя тока.
  • Уровень входящего напряжения. Он должен быть больше на 20% чем U АКБ, которое производится преобразователями света в ток.

Контроллер заряда солнечной батареи на данный момент выпускается всех мастей. Он может обладать защитой от плохих погодных условий, больших нагрузок, замыканий, перегреваний и даже от неправильного включения. Например, такое может случится, когда путаете полярность. В результате брать нужно такое устройство, которое будет иметь несколько уровней защиты.

Популярные компании производители

  1. Автоматика-с.
  2. Эмикон.
  3. Овен.
  4. SLC 500
  5. Allen-Bradleo.
  6. Micro Logix

Данные изготовители занимаются производством подобных приспособлений уже много лет.

Как работает солнечная батарея?

Солнечная энергия преобразуется в последовательно подключённых фотоэлементах. Рассмотрим принцип работы солнечной батареи на уровне фотоэлектрических элементов. Основой фотоэлемента является кристалл кремния. Соединения кремния очень распространены в природе. Самый известный – это оксид кремния или песок. Кристалл кремния можно упрощенно назвать большой песчинкой. Кристаллы выращиваются искусственно в лабораторных условиях. Обычно их получают кубической формы, а затем на пластины. Толщина этих пластин всего 200 микрон. Это в 3─4 раза толще волоса человека.

Принцип работы фотоэлемента

Мощность одного фотоэлектрического элемента маленькая, а напряжение составляет около 0,5 вольта. Поэтому их последовательно объединяют в батареи по 36 штук, чтобы получить на выходе 18 вольт. Это хватит для того, чтобы зарядить аккумулятор 12 вольт. Здесь ещё нужно учесть, что заявленное напряжение и мощность будут только при работе батареи с максимальной отдачей, что в реальных условиях редкость. Собранная батарея помещается подложку, закрывается стеклом и герметизируется. Используемое стекло должно пропускать ультрафиолет, поскольку солнечная батарея также преобразует и эту часть спектра. Собранные батареи могут объединяться друг с другом в последовательные и параллельные цепочки. Получается небольшая солнечная электростанция.

Сегодня солнечные батареи устанавливаются в своих домах и на дачах для экономии электроэнергии. Такие миниатюрные гелиосистемы работают круглый год. Главное, чтобы поверхность панелей была чистой и светило солнце. В ряде случаев их эффективность выше в морозный солнечный день, чем в летний. Это объясняется тем, что разогрев солнечных модулей несколько снижает эффективность их работы.

Гелиосистема: солнечные батареи и коллекторы

Что касается установки солнечных батарей, то здесь следует отметить следующие моменты:

  • Устанавливать панели нужно на южной стороне крыши, фасада или на участке стороной на юг;
  • Угол наклона соответствует значению широты вашего региона;
  • Рядом не должно быть объектов, отбрасывающих тень на солнечные батареи;
  • Поверхность панелей нужно регулярно очищать от грязи и пыли;
  • Желательно использовать системы с отслеживанием положения солнца.

Современные гелиосистемы пока не в состоянии полноценно обеспечивать дом энергией в пасмурную погоду. Но как часть комбинированной системы энергоснабжения дома они очень уместны.

Как работает контроллер зарядки аккумулятора?

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Настройка схемы

Перед началом настройки временно разорвите цепь выхода компаратора U1-2.

Вместо термистора подключите сопротивление 8.2 кОм, примерно равное сопротивлению 10-килоомного термистора при температуре 25 градусов Цельсия. Если вы не планируете использовать термокомпенсацию точки максимальной мощности, или расстояние от панели до контроллера больше 2 метров, резисторы R15, R17 и термистор R16 могут быть удалены без ущерба для работоспособности схемы. При этом резистор R4 подключается к плюсовой шине.

Операции настойки выполняются в следующей последовательности:

  1. Подключите к выходу контроллера заряженную примерно на 50-60% аккумуляторную батарею небольшой мощности, например 7 А·ч от источника бесперебойного питания. Как правило, такие аккумуляторы есть в арсенале мастера.
  2. Проверьте наличие опорного напряжения 8 В. 
  3. Подключите к входу контроллера регулируемый источник 10-24 В с током до 2 А через сопротивление 5 Ом, имитируя подключение солнечной батареи.
  4. Медленно поднимая напряжение, контролируйте состояние выхода компаратора U1-1. Если при напряжении, равном номинальному напряжению панели, например 17.2 В, с которой будет использоваться контроллер, на выходе U1-1 все еще будет высокий потенциал, регулируем R5 до возникновения автоколебаний. 
  5. Далее контролируя напряжение на конденсаторе С1 и увеличивая входное напряжение, убеждаемся, что напряжение на конденсаторе С1 остается неизменным и равным номинальному напряжению солнечной панели. При помощи осциллографа убедитесь, что форма сигнала на стоке Q3 близка к показанной на Рисунке 3. 
  6. Напряжение на аккумуляторе начнет расти. Когда оно достигнет 14.5 В, прекратите настройку, отключите аккумулятор и источник питания. Восстановите соединение выхода компаратора U1-2 с элементами схемы. 
  7. Подключите аккумулятор и источник питания. Если форма импульсов изменилась, и ток заряда резко упал, регулируйте R10 до тех пор, пока изменение ограничения зарядного тока не будет наступать при напряжении на заряжаемом аккумуляторе 14.4 В.
Рисунок 3.Форма сигнала на стоке MOSFET Q3.

На этом настройка может считаться законченной.

Преимущества и недостатки

Солнечные батареи, так же как другие устройства обладают своими достоинствами и недостатками. К несомненным плюсам этих систем можно отнести следующие:

  • Возможность автономной работы позволяет организовать питание объектов, электронных устройств и освещения, удаленных на значительное расстояние от стационарных электрических сетей.
  • Значительная экономия денежных средств в процессе эксплуатации. Солнечный свет, превращающийся в электроэнергию, ничего не стоит и не требует дополнительных расходов. Платить приходится лишь за инверторы и аккумуляторные батареи, требующие периодической замены. И даже в этом случае солнечные панели окупятся примерно за 10 лет при среднем гарантийном сроке службы в 25-30 лет. При соблюдении всех правил эксплуатации, батареи смогут прослужить еще дольше.
  • По сравнению с обычными электростанциями, потребляющими топливо и загрязняющими окружающую среду, схема работы солнечных панелей отличается экологической чистотой и отсутствием шума.

Тем не менее, данные устройства обладают и серьезными недостатками, которые следует заранее учитывать в предварительных расчетах:

  • Высокая стоимость не только панелей, но и дополнительных компонентов – инверторов, контроллеров, аккумуляторных батарей.
  • Окупаемость наступает слишком долго. Деньги в течение длительного времени оказываются извлеченными из оборота.
  • Солнечные системы с фотоэлектрическими элементами требуют очень много места. Довольно часто для этих целей приходится задействовать не только всю крышу, но и стены здания, серьезно нарушая проектные дизайнерские решения. Дополнительное место необходимо аккумуляторным батареям с большой емкостью, которые в отдельных случаях могут занять целое помещение.
  • Процесс вырабатывания электроэнергии происходит неравномерно, в зависимости от времени суток. Этот недостаток компенсируется аккумуляторными батареями, которые днем накапливают электроэнергию, а ночью отдают ее потребителям.

Правила установки

Максимальная мощность панели достигается в положении, при котором солнечные лучи падают перпендикулярно. Это необходимо учитывать при установке

Важно также учесть, в какое время суток минимальная облачность. Если угол наклона крыши и ее положение не соответствуют требованиям, то оно исправляется регулировкой основания

Между батареей и крышей должен быть воздушный зазор 15–20 сантиметров. Это необходимо для протекания дождя и предохранения от перегрева.

Фотоэлементы плохо работают в тени, поэтому следует избегать располагать их в тени от зданий и деревьев.

Электростанции из солнечных фотоэлементов – это перспективный экологически чистый источник энергии. Их широкое применение позволит решить проблемы с нехваткой энергии, загрязнением окружающей среды и парниковым эффектом.

Предыдущая
Альтернативные источникиКак правильно осуществить установку солнечных батарей

Спасибо, помогло!Не помогло

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий