Инверторы для солнечных батарей: виды и критерии выбора

Мощность инвертора и солнечных батарей

Номинальная мощность на стороне переменного тока AC определяет максимальную мощность потребителей, которые могут быть подключены к инвертору, или максимальный объем энергии, который может быть подключен к сети. Этот параметр всегда указывается в техническом паспорте. Инвертор для оптимальной эффективности должен работать как можно ближе к номинальной мощности. Эффективность преобразования может составлять до 98% в зависимости от модели. Если мощность генерируемого тока от солнечных батарей падает, например, в пасмурный день, когда солнечная интенсивность не превышает 200 Вт/м², эффективность инвертора резко падает.

Мощность по постоянному току DC, как правило не фиксированная и определяется на основании выходной мощности. Оптимальный диапазон мощности солнечных батарей составляет от 80 до 120% от номинальной выходной мощности инвертора. Производители инверторов обычно рекомендуют немного «перегружать» инвертор по стороне постоянного тока, поскольку мощность солнечных батарей всегда задается для условий STC, которые редко достигаются на практике. Энергия порядка 1000 Вт/м² в течение всего года составляет всего от нескольких дней до нескольких часов, что составляет всего 1-2% от общего времени солнечного излучения. В оставшееся время мощность солнечного излучения не превышает 800-900 Вт/м². Это означает, что 98% времени солнечные батареи работают максимум на 80-90% от их мощности.

Кроме того, мощность солнечных батарей падает со временем эксплуатации, это связано с эффектом деградации кремниевых фотоэлементов. Этот процесс идет довольно медленно, но уже в первый год работы производительность падает в среднем на 1-2 процента. Из этого следует, что солнечные батареи никогда не достигают номинальной мощности для условий STC, предоставляемой заводом-изготовителем.

Технические характеристики инвертора — общие данныеТехнические характеристики инвертора — выходные данныеТехнические характеристики инвертора — входные данные ( для примера расчетов выбираем инвертор Fronius SYMO 10.0-3-M)

Виды инверторов для солнечной батареи

Существует множество разновидностей данных приборов. И выбрать их не так-то просто.

Модифицированные или сетевые инверторы

В основе производства лежат диоды варикапы. У них есть низкочастотный модулятор. Это позволяет совершать вариации. Они отлично подойдут к круглым солнечным панелям. Большинство из них обладают проводностью более 40 мк. У них есть подкладки в изоляторах. Существуют даже такие, которые работают сквозь контроллер подзарядки.

У выпрямителей для инверторов имеется частота около 30 Гц, а иногда и выше.

Сетевой инвертор для солнечных батарей имеет следующие плюсы:

  • Малый размер.
  • Хорошая защита.
  • Малое потребление энергии.
  • Быстрая конвертация напряжения.

Иногда в корпусе инвертора встроен контроллер. Многие продавцы называют данный прибор гибридным. Но в действительности это не так, он комбинированный.

Гибридный инвертор

Сочетает в себе особенности всех остальных устройств данного типа. Это самый дорогой, но наиболее подходящий инвертор для солнечных батарей.

Гибридный прибор может дополнительно приобретать нагрузку из сети и АКБ. У него в приоритете постоянное напряжение. Если по каким-то причинам в аккумуляторе будет мало тока, то он возьмет его из сети.

Инверторы работающие в автономном режиме

Отлично подойдут для СБ разной мощности. Работают даже в момент возникновения перенапряжения до 4А. Идут на 3-и обкладывания. На них можно встретить обозначение «OFF Grid». Они не контактируют с бытовой сетью. Мощность может быть от 100 – 8000 ват.

Если встретился прибор с пометкой On Grid то это означает что у него есть дополнительная функция. Он может контролировать амплитудные перепады и частоту.

Если внешняя сеть выдает неисправность автономный инвертор отключится.

  • Со стороны многократного тока инвертор выбирают как следует из номинальной мощности солнечных панелей.
  • Ежели суммарная мощность применяемых в жилище устройств меньше возможных полномочий солнечной электростанции, тогда избытки произведенной электричества попадают во наружные электрические сети.
  • В случае если же мощности мало для нормальной работы домашних устройств, тогда осуществляется подпитка извне.
  • При неимении напряжения кормление сервируется от заряженного аккума. В случае, когда в систему не интегрированы аккумуляторные батареи, энергия, сделанная солнечной электростанцией, уходит в единую сеть.
  • Сетевые фотоэлектрические инверторы с великой эффективностью употребляют энергию, получаемую от солнечных батарей.

Основные плюсы:

  1. Стоимость в пределах нормы.
  2. Быстро преобразуют напряжение.
  3. Стабильно работают при высокой влажности.
  4. Легко устанавливается пониженный варикап.
  5. Имеется подстройка частоты.
  6. Электрическая проводимость пониженная.

Генерируют сигнал: 1) псевдо синусоидальный; 2) прямоугольный; 3) синусоидальный. Может встречаться название миандровые. То есть это не синусоидальные.

Первый имеет следующие особенности

Нечто среднее между двумя другими сигналами. Его особенности:

  • Небольшая стоимость.
  • Все приборы отлично работают.
  • Генерирует шумовые волны, создает помехи.
  • Чувствительные приборы при наличие данного сигнала работать не могут.

Характеристики второго

Лучше всего использовать этот тип для передачи напряжения к световым устройствам.

Особенности:

  • Работают просто и понятно.
  • Стоимость низкая.
  • Не защищены от скачков напряжения.
  • Подходят не для каждого бытового прибора. Могут быть с ним просто не совместимы.

Синусоидальный сигнал и его характеристики

Продуцируют хороший ток с нужной синусоидой. Отлично подойдет для крупной бытовой техники.

Основные особенности:

  • Защищает технику от резкого изменения напряжения.
  • Стоят дорого.

Чем отличаются сетевые инверторы от автономных?

Автономные способны функционировать без доп АКБ. Работают данные приборы только с теми устройствами, которые способны выполнять контроль мощности. Когда мощность в норме они подключаются автоматически и генерируют электричество. В них встроены стандартные розетки.

Сетевые требуют приборы, которые будут заряжать АКБ. Так же у них есть специальные штуки, позволяющие не перепутать полярность при подключении. Они контролируют зарядку батареи.

Сколько инверторов должно быть в системе

В теории 1 прибора необходимой мощности должно хватить для всей электростанции. Но, если у вас большое количество фотоэлементов и они собраны в несколько линий, лучшу на каждую их них поставить такой преобразователь.

Почему так? Дело в том что нестабильная работа одной линии, например она расположена не на солнечной стороне, будет негативно сказываться на работе инвертора и его КПД будет в целом ниже

Если важно получить максимальную эффективность электростанции, такой вариант не подходит

Альтернативный вариант, это инвертор на несколько независимых MMP входов. Их может быть 2-4  и стоят такие модели значительно дороже.

Что представляет собой устройство?

Принцип работы системы, основу которой составляют солнечные батареи, заключается в выработке постоянного тока напряжение от 12 до 48В, который используется для зарядки аккумуляторов. Но поскольку бытовая техника нуждается в переменном токе, то она подключается к источнику питания через инвертор-преобразователь напряжения.

Основной задачей такого прибора является преобразование постоянного тока, производимого солнечными батареями в переменный. В дальнейшем такая энергия может использоваться различными устройствами. Мощность инвертора-преобразователя напряжения может быть от 100 до 8000 Вт. Это позволяет выбирать прибор, параметры которого соответствуют общей нагрузке в сети электропитания конкретного объекта.

Возможные схемы подключения

При построении фотоэлектрического комплекса, комбинированного с центральной сетью, существуют разные варианты подсоединения инвертора.

Вариант #1 – схема с контроллером заряда DC

Наиболее популярный вариант, где заряжение аккумуляторной батареи осуществляется через солнечный контроллер МРРТ (анализ точки пиковой мощности).

В схеме используется преобразователь, поддерживающий передачу электричества в сеть или нагрузку, если напряжение аккумулятора превосходит заданный пользователем параметр

Особенности решения:

  • эффективное использование возобновляемой энергии при наличии/отключении сети;
  • возможность активации работы от солнечной системы после разрядки аккумулятора.

А также еще одним решением является несколько увеличенные потери на преобразование энергии на участке «контроллер-аккумулятор-инвертор».

Вариант #2 – схема с гибридным и сетевым преобразователем

Сетевой преобразователь на выходе батарейного инвертора. Согласно схеме два конвертера подсоединены к разным солнечным батареям.

Гибридный преобразователь подведен к опционной фотоэлектрической панели для подзарядки аккумулятора, сетевой – соединен с основным солнечным модулем.

При нормальных условиях (наличие сетевого тока) сетевой преобразователь питает резервируемую нагрузку, КПД преобразование – около 95%. Излишек энергии поступает на аккумулятор, а при его наполнении – в общую сеть

  • бесперебойная работа независимо от наличия центрального сетевого напряжения;
  • высокий КПД и минимизация потерь на стороне DC благодаря достаточному уровню напряжения солнечной батареи;
  • аккумуляторы почти всегда функционируют в буферном режиме, что увеличивает их срок службы;
  • использование гибридных инверторов, рассчитанных на заряд аккумулятора с выхода;
  • необходимость регулировки работы сетевого инвертора.

Суммарная мощность сетевого преобразователя не должна превышать мощность гибридного «конвертера» – это позволяет утилизировать энергию солнечных батарей в случае разряда аккумулятора, отключения сети.

Независимо от выбранной схемы, при подключении инвертора следует учитывать ряд нюансов:

  1. Проводные соединения для DC не должны быть длинными. Инвертор желательно располагать в близости (до 3-х м) от солнечных батарей, а далее «наращивать» магистраль с AC.
  2. Преобразователь недопустимо монтировать на конструкции из горючих материалов.
  3. Стеновой инвертор располагается на уровне глаз для удобства считывания информации с дисплея.

К подключению моделей мощностью более 500 Вт предъявляются особые требования. Соединение должно быть жестким с надежным контактом между клеммами прибора и проводами.

Также на нашем сайте есть другие статьи по солнечной энергетике и подключению отдельных компонентов и модулей при сборке автономной системы.

Рекомендуем к ознакомлению следующие материалы:

  • Схема подключения солнечных батарей: к контроллеру, к аккумулятору и обслуживаемым системам
  • Зарядное устройство на солнечных батареях: устройство и принцип работы зарядки от солнца
  • Как сделать солнечную батарею своими руками: способы сборки и монтажа солнечной панели

Солнечные батареи какие лучше по характеристикам

Коэффициент полезного действия

КПД панели является одним из главных критериев эффективности преобразования солнечной энергии в электричество. Чем выше КПД, тем лучше работоспособность модуля. Максимальный КПД (44,7%) данное разработали немецкие ученые. Он являет собой своеобразный ориентир для других производителей. Впрочем, можно использовать в любительских целях модуль, КПД которого находится в диапазоне 10-20%.

Тип панели

На сегодняшний день солнечные панели подразделяются на две группы:

  1. Кремниевые батареи — одни из самых популярных в мире. Их доля применения достигает 90%. Они имеют три подвида, которые отличаются друг от друга отличаются КПД и ценой. По ценовой доступности наиболее доступными считаются поликристаллические панели. Их основным элементом является кристалл, полученный охлаждением расплавленного кремния. Материал не самый чистый, его КПД достигает 15%. Монокристаллы представляют собой исключительно чистый кремниевый материал, отличающийся высоким КПД (около 20%). Такие панели имеют немалую цену. Аморфные модули создаются из гидрида кремния (SiH4), наибольшее их преимущество – высокая производительность в условиях ограниченной освещенности (дождь, запыленный воздух, сумерки, туман).
  2. Пленочные модули входят в применение постепенно. Они завоевывают свои позиции за счет гибкости и удобства применения. Эти модули можно даже резать ножом, огибать неровные основания, они тоньше и весят меньше. из недостатков только: меньшая мощность, высокая цена изделия, подверженность атмосферному воздействию.

Назначение

Решая: солнечные батареи какие лучше из широкого ряда моделей, при выборе следует отталкиваться от назначения панели.

  • Для создания мини-электростанций предпочтение отдается мощным стационарным модулям с хорошей защитой от снега, дождя, мороза.
  • Чтобы организовать освещение в турпоходе или для подпитки аккумуляторов гаджетов (смартфонов и планшетов) требуются мобильные панели, которые будут удобны в транспортировке. Мощность их небольшая, зато они доступны в цене.

Качество изготовления

Чтобы понять солнечные батареи какие лучше, следует иметь ввиду, что каждой панели присваивается класс, который демонстрирует качество сборки.

Солнечная батарея в походе незаменимая вещь для тех, кто привык пользоваться гаджетами

Итак, мобильные устройства по преобразованию энергии Солнца в электрический ток могут применяться для:

  1. зарядки мобильных телефонов и других устройств;
  2. питания радиоприемников во время походов, рыбалки;
  3. питания систем навигации во время экспедиций;
  4. освещения в темное время суток во время походов.

Преимущества инверторных батарей

Современные жилища часто подвергаются перепадам напряжения и перебоям с электричеством. Больше всего от этого страдает система отопления, так как в большинстве домов воду нагревают при помощи электроэнергии. Наличие постоянного электричества влияет на бесперебойную работу газового котла. Циркулирующего насоса и управляющей автоматики.

Инвертор предназначен для трансформирования постоянного тока в переменный

Если отопительный котел остановится, то вполне вероятно, то произойдет разрыв труб, по которым проходит вода, что приведет к разрушению отделочных материалов и появлению трещин в строительной конструкции. Инверторные батареи в последние годы приобрели широкую популярность и стали вытеснять индивидуальные генераторы. Инверторы работают благодаря тому, что специальные батареи поставляют ему источник питания.

Преимущества инвертора:

Звук и быстрое включение. Инвертор запускается бесшумно: никто даже не заметить, как запуститься аккумуляторная питания инверторов.

Бесшумность при работе. Если генераторы на топливе работают очень шумно, то инвертор не производит шума вообще.

Нет выхлопных газов

При использовании генераторов важно хорошо продумать расположение и вывод труб, через которые газы покидают комнату. Инвертор не выбрасывает выхлопные газы.

Пожаробезопасность

Для работы инвертора не требуется топливо, то снижает опасность его возгорания.

Мобильность. Инвертор можно располагать в любом удобном месте.

При размещении инвертора важно обратить внимание на то, что в комнате должна быть качественная теплоизоляция. Использование инверторов не только эффективно, о и выгодно. Конечно, его покупка и установка будут стоить денег, но в дальнейшем инверторы окупятся и значительно сэкономят средства

Конечно, его покупка и установка будут стоить денег, но в дальнейшем инверторы окупятся и значительно сэкономят средства.

Подключение инвертора к солнечной батарее

Инвертор является устройством, работающим в комплексе с другими элементами солнечной электростанции, которыми являются:

  • Солнечная панель – источник электрической энергии;
  • Аккумуляторная батарея – накопитель выработанной энергии;
  • Контроллер заряда – отвечает за состояние аккумуляторных батарей, контролирует режим их работы — «заряд-разряд»;
  • Провода и кабели – обеспечивают соединение всех устройств в единую электрическую цепь;
  • Несущие конструкции – обеспечивают надежное крепление монтируемого оборудования, некоторые устройства, позволяют регулировать положение солнечных панелей в пространстве, в соответствии с расположением солнца.

Подключение инвертора в схему работы электрической станции, зависит от типа устройства, т.е. способности работать по отношению к внешней электрической сети.

Подключение, в зависимости от типа инвертора, выполняется по следующей схеме, для:

  • Автономных («off grid») моделей.
  • Сетевых («on grid») моделей.

    Модели данного типа устанавливаются между нагрузкой и аккумулятором, зарядка которого также осуществляется через контакты инвертора. У некоторых моделей, как показано на рисунке, может быть предусмотрен отдельный вход для подключения к электрической сети переменного тока, для обеспечения зарядки аккумуляторов, в случае невозможности их заряда от солнечных батарей.

    Инверторы данного типа, включаются в электрическую цепь между солнечной батарей и элементами нагрузки и внешней электрической сетью. У данного типа устройств не предусмотрено подключение аккумуляторных батарей. В случаях, когда количество вырабатываемой электрической энергии превышает требуемые значения, излишки перераспределяются во внешнюю сеть.

    Гибридных («hybrid») моделей.

Гибридный тип подобных устройств, предполагает установку инвертора между аккумуляторами, внешней сетью и нагрузкой одновременно.Использование инвертора, в схемах солнечных электростанций, позволяет осуществлять их работу в автоматическом режиме, что значительно упрощает их использование и расширяет сферу применения.

Что такое гибридный инвертор, принцип действия

Начнем с теоретической части и разберемся с особенностями оборудования.

Гибридный инвертор — устройство, позволяющее параллельно использовать напряжение от источников постоянного (DC) и переменного (AC) тока. Приоритет отдается какому-то одному источнику, а второй находится «на подхвате» и подключается в случае потери напряжения.

Основная функция — преобразование постоянного тока в переменный с дальнейшим подключением к электрической сети дома для бесперебойного электроснабжения.

В качестве источника DC может выступать солнечная батарея, небольшая гидроэлектростанция, ветряная мельница и т. д.

Принцип действия гибридного оборудования зависит от времени суток:

  1. День. В этот период энергия солнца попадает на фотоэлемент, преобразуется в электричество и подается к инвертору для преобразования. На выходе получается напряжение, максимально подходящее для бытовой сети. После этого устройство питает электрическую сеть дома, заряжает АКБ, а при чрезмерном заряде сбрасывает «лишнее» в общую сеть по «зеленому» тарифу.
  2. Вечер, ночь. С учетом выбранного режима гибридный инвертор подает напряжение на дом от АКБ или от бытовой сети.

Благодаря переключению режимов, обеспечивается круглосуточная подача электричества в бытовую сеть без сбоев (даже при потере одного из источников питания).

В зависимости от применяемой модели гибридный инвертор может иметь следующие возможности:

  • «подмешивание» энергии от АКБ;
  • добавление мощностей оборудования и электросети;
  • регулировка частоты тока на выходе;
  • подключение сетевых фотоэлектрических инверторов;
  • автоматическое переключение цепи питания потребителей и т. д.

Отличия от ББП

Начинающие пользователи, да и некоторые консультанты в магазинах, часто путают гибридные инверторы и блоки бесперебойного питания (БПП).

Несмотря на множество схожих черт, эти устройства имеют много индивидуальных особенности.

Главные отличия:

  1. БПП — инвертор со встроенным зарядным устройством. Первоначально расходуется энергия, полученная от фотоэлементов, а при ее дефиците система переводится на питание от сети. В таком блоке нет схемы, позволяющей параллельно использовать электричество от сети и энергию АКБ. Они предназначен для раздельного питания и переводятся на другой режим работы в определенных обстоятельствах. Минус в том, что из-за частых переключений АКБ быстро изнашивается. Кроме того, в бюджетных моделях БПП нет опции регулирования максимального напряжения.
  2. Гибридные инверторы — более продвинутое оборудование, лишенное таких минусов. Устройство само настраивается на нужную мощность и может параллельно работать с разными источниками питания. При желании можно установить приоритет на AC или DC. В некоторых моделях можно лимитировать мощность от бытовой электросети.

Гибридные инверторы выгодно отличаются от БПП. Они имеют больший ресурс и способны параллельно работать от разных источников, обеспечивая бесперебойное питание.

Философия выбора энергосистемы на солнечных батареях

Итак, нужно решить, для чего будет применяться система.

1. Аварийный резерв

В случае кратковременного пропадания напряжения в городской сети нужно обеспечить работу жизненно важных приборов в доме – отопление, связь, освещение, холодильник. Все остальные приборы по возможности не использовать. Предполагается, что авария – явление редкое и непродолжительное.

В этом случае конфигурация системы с солнечным инвертором и аккумуляторами будет минимальной.

2. Экономия

Если планируется использовать солнечную энергию в целях экономии, то нужно наращивать мощность системы. И выбирать такой режим работы инвертора, когда энергия солнца “подмешивается” к энергии, которую мы оплачиваем по счетчику. Либо некоторые линии питаются постоянно только от солнечных батарей.

Тем самым экономится электроэнергия, которую мы получаем из города, при неизменном потреблении всего дома. И в этом случае можно говорить об окупаемости такой системы на солнечных батареях.

Разумеется, этот вариант включает в себя и аварийное электропитание, т.е. первый случай.

3. Полная замена

Этот вариант – полный отказ от городской электросети. Городская электросеть нужна будет лишь для аварийного резервирования системы на солнечных батареях, если она вдруг выйдет из строя. Такая конфигурация системы будет иметь максимальную мощность и стоимость.

В этом случае желательно также иметь и генератор, который понадобится в случае недостаточной энергии от солнца. Это может происходить, например, зимой, когда активность солнца минимальна

Генератор послужит для зарядки аккумуляторов и питания важной нагрузки

Плюсы и минусы

При выборе инверторного оборудования нужно знать его положительные и отрицательные качества. Для удобства сведем их в таблицу.

ПреимуществаНедостатки
Возможность использования в автономном режиме.Отключение при полном разряде АКБ, что приводит к сбоям в работе.
Применение на напряжение 220 или 380В в зависимости от типа.Нет возможности эксплуатировать изделие при отсутствии напряжения в сети.
Удобство установки и настройки.При поломке одного из элементов (контроллер, инвертор) необходимо выводить из работы все устройство.
Отсутствие шума во время работы.Высокая стоимость.
Нет вредных выбросов, опасных для атмосферы.Большой ток холостого хода на большей части моделей.
Возможность применения в системах с разными параметрами на входе. 
Возможность зарядки АКБ. 
Программирование режимов потребления. 
Продажей «лишней» энергии по зеленому тарифу. 
Независимость от стационарной сети. 

Пленочные батареи

В отличие от кремниевых, пленочные солнечные панели выпускаются в рулонах, которые можно раскатать на большой площади. В состав такой панели входит теллурид кадмия или селенид меди. Главным преимуществом пленки является возможность резать ее и подгонять под любые размеры и формы крыши. Также она весит гораздо меньше любых кремниевых батарей и легко ложится на любой скат крыши.

Однако пленочные солнечные батареи имеют относительно небольшую мощность и их проще повредить механическими воздействиями. Их КПД составляет всего 10%, что гораздо меньше, чем даже у поликристаллических модулей. Но благодаря своей невысокой цене пленочные батареи имеют свою аудиторию.

Описание фильтров категории

Производитель — можно выбрать продукцию одного или нескольких производителей

Мощность — можно выбрать инвертор или ББП по диапазону мощности

Напряжение — фильтр по входному напряжению (напряжению на аккумуляторах)

Увеличение мощности — возможность параллельного соединения выходов инвертора на одной фазе для увеличения общей выходной мощности. Для этого ББП соединяются между собой коммуникационными кабелями или устройствами (см. описание ББП) и один из них становится ведущим, а остальные ведомыми.

3 фазы:

  • да — инвертор трехфазный
  • нет — инвертор однофазный
  • возможно — инвертор однофазный, но есть возможность синхронизировать выходы инверторов со сдвигом фаз для питания 3-фазной нагрузки.

Тип устройства (подробное описание в статье «Тип ББП»)

  • In-line (резервный). Блок бесперебойного питания при наличии сетевого напряжения, которое укладывается в допустимые значения по напряжению и частоте, транслирует его в нагрузку. В этом время АБ заряжаются. При пропадании сети ББП переключается в режим инвертора.
  • Online. В этом ББП входное переменное напряжение выпрямляется, от него питается инвертор, который в свою очередь питает нагрузку. Выпрямленным напряжением также заряжаются аккумуляторы через специальное зарядное устройство. Переключения нет, так как нагрузка постоянно питается от аккумуляторов.
  • Инвертор (без ЗУ). Просто инвертор без зарядного устройства для АБ. Для систем, не подключенных к сети

Приоритет АБ/СБ — некоторые модели блоков бесперебойного питания могут выбирать приоритет использования энергии от источника переменного тока (сеть или генератор) и постоянного тока (аккумуляторы, к которым могут быть присоединены солнечные батареи, ветрогенератор, микрогидроэлектростанция и т.п.). Приоритет аккумуляторам обычно предоставляется при превышении напряжения на АБ над заданным.

  • Переключение — ББП полностью отключается от сети при достижении напряжения на АБ установленного уровня и работает только от АБ (которые могут подзаряжаться источником постоянного тока — СБ, ВГ, микроГЭС и т.п.) до тех пор, пока напряжение на них не упадет до порогового значения. Полная мощность на выходе ограничивается мощностью инвертора.
  • Подмешивание — более дорогие ББП, обычно называемые гибридными, могут подмешивать энергию от аккумуляторов не отключаясь от сети. При этом аккумуляторы не разряжаются, что продлевает срок их службы. Полная мощность на выходе может равняться сумме мощностей инвертора и сети. Обычно можно выставить ограничение на потребление мощности от сети. Также, почти все гибридные инверторы могут увеличивать максимальную потребляемую мощность нагрузки за счет добавления мощности инвертора — это нужно, если есть ограничения по мощности сети или генератора.

Панель индикации — наличие жидкокристаллической панели индикации и управления на самом инверторе.

Встроенный контроллер СБ — некоторые модели инверторов и ББП имеют встроенный контроллер для солнечных батарей.

Встроенные реле — наличие встроенного программируемого реле с гальванически развязанными («сухими») контактами. Реле может программироваться на срабатывание по различным условиям или событиям (см. описание инверторов для более подробной информации. Таких реле может быть от 1 до 3.

Материал

Для изготовления корпуса преобразователя могут использоваться разные материалы:

  • Алюминий.
  • Сталь.

Также существуют комбинированные варианты (алюминий с пластиком и сталь с пластиком).

Алюминиевый корпус лучше других обеспечивает пассивное охлаждение. Изделия из стали обладают повышенной прочностью. Вариант из пластика подходит только для маломощных инверторов.

Мнение эксперта
Кузнецов Василий Степанович

Вне зависимости от материала корпуса и типа охлаждения, устанавливать инвертор необходимо только на открытом пространстве, чтобы обеспечить беспрепятственное отведение тепла.

Мнения экспертов о продукции

Выбор типа солнечной станции зависит от задачи, которую необходимо решить с помощью альтернативных источников энергии.

В настоящее время наиболее широко применяются три типа солнечных электростанций:

  1. Автономные. В местах, где нет подключения к центральной сети, в садах, на дачах, автономные солнечные электростанции самые востребованные, хорошо подходят для освещения и других жизненно важных электроприборов. Применение автономных солнечных станций позволяет существенно экономить финансы, на жидкое топливо для генераторов, особенно в районах с большим количеством солнечных дней.
  2. Комбинированные с сетью. Если есть центральная сеть, то не нужно отказываться от нее, лучше сделать систему совместную с сетью. Автоматическая работа инвертора, входящего в состав такой станции, будет самостоятельно выбирать источник питания электрических приборов. А входящие в состав аккумуляторные батареи будут источником резервного электроснабжения, при отключениях сети.
  3. Сетевые on-grid. Сетевые солнечные электростанции самые выгодные и быстро окупаемые, поскольку не имеют в составе аккумуляторных батарей и преобразование энергии происходит с высоким КПД. Более того, позволяют передавать (продавать) излишки генерируемой электроэнергии в сеть, тем самым ускоряя процесс окупаемости. Во многих странах при такой генерации с помощью возобновляемых источников для продажи электроэнергии действует «зеленый тариф». В РФ в 2019 году принят в первом чтении Федеральный закон №581324-7 «О внесении изменений в ФЗ «Об электроэнергетике» в части развития микрогенерации», который позволит реализовывать электрическую энергию, вырабатываемую альтернативными источниками, по специальному тарифу. Покупка гарантирующим поставщиком электроэнергии от объектов микрогенерации будет обязательной. Цена купли-продажи будет равна средневзвешенной нерегулируемой цене на электроэнергию на ОРЭМ. Доходы физических лиц, возникшие при реализации лишней электроэнергии, произведенной для нужд своего домохозяйства, не будут подлежать налогообложению.

Независимо от выбранного типа солнечной электростанции, стоит понимать, что для надежной и эффективной работы лучше приобретать высококачественные солнечные батареи. Несмотря на более высокую стоимость они более эффективны и долговечны. Срок службы батарей может достигать 30 и более лет. Покупатели часто задают вопрос: «Почему выработка зимой меньше?» Не нужно думать, что из-за холода батарея будет хуже работать. Негативное действие на эффективность работы оказывают осадки в виде снега, которые необходимо удалять, плюс меньшая продолжительность светового дня с высокой облачностью – именно это негативно влияет на выработку электроэнергии в зимнее время. Летом солнечная батарея генерирует меньшее напряжение, чем зимой. В жару температура на поверхности гелиопанели может достигать 50–55 °С, что снижает эффективность фотогальванических элементов.

Популярные модели

Каждый пользователь выбирает для себя сам какую модель выбрать и где ее купить. Конечно же оптимальным местом для выбора и приобретения сложных технических устройств, к каковым относится солнечный инвертор, являются компании дилеры производителей подобных изделий, но не везде они присутствуют, поэтому можно воспользоваться сетью интернет, где можно найти модель, соответствующую предъявляемым к ней требованиям.

В настоящее время наибольшей популярностью пользуются серии и модели:

  • «СибВольт» (Россия) – сетевые инверторы, номинальной мощностью от 1,5 до 3,0 кВт, на напряжение 12/24/48 В.
  • «Sunrise» (Китай) – гибридного типа, номинальной мощностью 3,2 и 4,0 кВт, на напряжение 48 В.
  • «UMA» (Россия) – автономного типа, номинальной мощностью от 2,4 до 4,0 кВт, на напряжение 24/48 В.
  • «S300» (Тайвань) – автономного типа, номинальной мощностью 300,0 Вт, на напряжение 12/24 В.
  • «Stark Country» (Китай) — гибридного типа, номинальной мощностью от 1,6 до 4,0 кВт, на напряжение 12/24/48 В.
  • «Sunville SV15000s» (Россия) – сетевое устройство, номинальной мощностью 15,0 кВт.

Серии и конкретные модели, на рынке подобных товаров, представлены достаточно обширно, как в плане технических характеристик, так и компаний их выпускающих. В связи с этим всегда есть возможность выбрать устройство в соответствии с личными пожеланиями пользователя основываясь на критериях выбора рассмотренных ниже.

Подключение инвертора к солнечной батарее

Необходимо приготовить кабель соответствующего сечения, способный выдерживать все возможные нагрузки. Необходимо учитывать, что длина соединительного кабеля между солнечными панелями и инвертором не должна превышать 3 м. Если потребители расположены далеко от модулей, удлиняют высоковольтное плечо — кабель на 220 В. Рассмотрим порядок присоединения прибора к комплекту солнечного оборудования:

Схема

Простейшая схема подключения инвертора — в разрыв между потребителями и аккумуляторами. Этот вариант используется для автономных устройств.

Наиболее сложная схема — для сетевых или гибридных приборов. Параллельно с АКБ подключается сетевое напряжение (на соответствующие контакты), тут же присоединяется нагрузка. Дополнительная пара контактов предназначена для резервируемой системы (резервное освещение, аварийное питание и т. п.). Выбор схемы зависит от назначения и конструкции инвертора, а также наличия подключения к централизованной сети.

Этапы

Процесс соединения приборов никаких сложностей не вызывает. Все контакты поименованы, главная задача — не перепутать их в спешке. Сначала собирают весь комплект — панели, контроллер, АКБ. После этого подключают инвертор и проверяют работоспособность. Обнаруженные ошибки сразу устраняют. Когда появляется полная уверенность в правильности всех соединений, подключают полезную нагрузку — приборы питания. С этого момента солнечные батареи считаются введенными в эксплуатацию.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий